Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations.
نویسندگان
چکیده
Counterions are required for RNA folding, and divalent metal ions such as Mg(2+) are often critical. To dissect the role of counterions, we have compared global and local folding of wild-type and mutant variants of P4-P6 RNA derived from the Tetrahymena group I ribozyme in monovalent and in divalent metal ions. A remarkably simple picture of the folding thermodynamics emerges. The equilibrium folding pathway in monovalent ions displays two phases. In the first phase, RNA molecules that are initially in an extended conformation enforced by charge-charge repulsion are relaxed by electrostatic screening to a state with increased flexibility but without formation of long-range tertiary contacts. At higher concentrations of monovalent ions, a state that is nearly identical to the native folded state in the presence of Mg(2+) is formed, with tertiary contacts that involve base and backbone interactions but without the subset of interactions that involve specific divalent metal ion-binding sites. The folding model derived from these and previous results provides a robust framework for understanding the equilibrium and kinetic folding of RNA.
منابع مشابه
Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4-P6 RNA by smFRET.
Structured RNA molecules play roles in central biological processes and understanding the basic forces and features that govern RNA folding kinetics and thermodynamics can help elucidate principles that underlie biological function. Here we investigate one such feature, the specific interaction of monovalent cations with a structured RNA, the P4-P6 domain of the Tetrahymena ribozyme. We employ ...
متن کاملRNA tertiary folding monitored by fluorescence of covalently attached pyrene.
The pathways by which large RNAs adopt tertiary structure are just beginning to be explored, and new methods that reveal RNA folding are highly desirable. Here we report an assay for RNA tertiary folding in which the fluorescence of a covalently incorporated chromophore is monitored. Folding of the 160-nucleotide Tetrahymena group I intron P4-P6 domain was used as a test system. Guided by the P...
متن کاملLow specificity of metal ion binding in the metal ion core of a folded RNA.
The structure and activity of nucleic acids depend on their interactions with metal ions. Fundamental to these interactions is the degree of specificity observed between the metal ions and nucleic acids, and a complete description of nucleic acid folding requires that we understand the nature of the interactions with metal ions, including specificity. The prior demonstration that high concentra...
متن کاملDetermining the Mg2+ stoichiometry for folding an RNA metal ion core.
The folding and catalytic function of RNA molecules depend on their interactions with divalent metal ions, such as magnesium. As with every molecular process, the most basic knowledge required for understanding the close relationship of an RNA with its metal ions is the stoichiometry of the interaction. Unfortunately, inventories of the numbers of divalent ions associated with unfolded and fold...
متن کاملRemoval of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA.
RNA folding landscapes have been described alternately as simple and as complex. The limited diversity of RNA residues and the ability of RNA to form stable secondary structures prior to adoption of a tertiary structure would appear to simplify folding relative to proteins. Nevertheless, there is considerable evidence for long-lived misfolded RNA states, and these observations have suggested ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 343 5 شماره
صفحات -
تاریخ انتشار 2004